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The two-dimensional Ising model is studied with a coupled Bernoulli map lattice model. The large fluctua-
tion of some thermodynamic quantities such as energy, the Kolmogorov-Sinai entropy, and magnetization is
calculated with the characteristic function. The average value of energy and magnetization at different coupling
constants can be estimated from the large fluctuation of the thermodynamic quantities at a fixed coupling
constant.@S1063-651X~98!08307-X#
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Coupled map lattice models have been used to study
otic spatio-temporal patterns@1–5#. We proposed a couple
map lattice that exhibits a statistical-mechanical phase t
sition @6,7#. Using the coupled map lattice, we can perform
simulation for the phase transition of the two-dimensio
Ising model, in which several thermodynamic quantities
exactly expressed@8#.

On the other hand, the large deviation theory@9# has been
applied to the multifractal@10#, statistical properties of tur
bulence@11# or chaos@12,13#. We also calculated the larg
fluctuation of the Ising model with mean-field coupling usi
the Renyi entropy. Then, we discussed a relation between
large fluctuation of some thermodynamic quantities at a fi
temperature and average values of the thermodynamic q
tities at different temperature@14#.

In this Brief Report, we calculate the large fluctuation
some thermodynamic quantities for the two-dimensio
Ising model with the coupled Bernoulli map lattice.

Each elemental map is the Bernoulli shift,

Xn115
2

11a
~Xn11!21 for 21,Xn,a,

Xn115
2

12a
~Xn21!11 for a,Xn,1,

~1!

wherea is a parameter satisfying21,a,1. The Bernoulli
shift has a uniform invariant measurer(X)51/2 over 21
,X,1. A spin variablesn is defined assn5sgn(Xn11
2Xn); that is,sn51 for Xn,a andsn521 for Xn.a. The
mean value ofsn is a and its time correlation iŝsnsm&
5dn,m . That is, the Bernoulli shift~1! can work as a random
number generator.
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We construct a two-dimensional coupled map lattice co
posed of the Bernoulli shift,

Xn11
i , j 5

2

11an
i , j ~Xn

i , j11!21 for 21,Xn
i , j,an

i , j ,

Xn11
i , j 5

2

12an
i , j ~Xn

i , j21!11 for an
i , j,Xn

i , j,1,

~2!

where 1< i<L and 1< j <L denote the lattice points in th
L3L square lattice. The parameteran

i , j is a time dependen
variable expressed as

an
i , j5tanhH K

4
~sn21

i 11,j1sn21
i 21,j1sn21

i , j 111sn21
i , j 21!J , ~3!

whereK is a coupling constant.
As shown in a previous paper, the probabilitypn($mi , j%)

that the spin configuration$sn
i , j% takes$mi , j% at timen obeys

a master equation,

pn~$mi , j%!5 (
m8 i , j

pn21~$m8 i , j%!w~$m8 i , j%→$mi , j%!. ~4!

The transition probabilityw($m8 i , j%→$mi , j%) is expressed as

w5)
i , j

1
2 @11tanh$~K/4!mi , j

3~m8 i 11,j1m8 i 21,j1m8 i , j 111m8 i , j 21!%#. ~5!

As in a previous paper, we consider the checkerboard t
updating rule for the coupled map lattice; that is, the upd
ing is performed alternatively for even lattice points whe
i 1 j is even and odd lattice points. In this case a detai
1137 © 1998 The American Physical Society
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balance condition is satisfied for the Markov process~5! and
the equilibrium distributionpeq is obtained as

peq~$m
i , j%!}expH ~K/8!(

i , j
mi , j

3~mi 11,j1mi 21,j1mi , j 111mi , j 21!J , ~6!

which is equivalent to the equilibrium distribution of th
two-dimensional Ising model. The Ising system exhibits
phase transition atK52 ln(11A2) for L→`.

The thermodynamic quantities such as the energyE
52(K/8)( i , j s

i , j (si 11,j1si 21,j1si , j 111si , j 21) and the
magnetizationM5( i , j s

i , j are quantities ofO(N) whereN
5L3L and the probabityp(Q) that a thermodynamic quan
tity takes Q which is deviated from the average value b
haves asp(Q);exp@NP(q)#, whereP(q) is an exponent tha
denotes the decrease rate of the probability of the large
viation as the system sizeN and q is the thermodynamic
quantity per spinq5Q/N. The quantity2P(q) corresponds
to the free energy in the statistical mechanics and it is ca
a rate function in the large deviation theory. We callP(q) a
generalized entropy in this paper. The generalized entr
can be calculated from a characteristic functionf(m)
5^exp(mQ)&, where^•••& denotes the average with respe
to the equilibrium distribution. IfN is large enough, the char
acteristic function can be estimated atf(m);exp$N@mqm
1P(qm)#% by the saddle point method, whereqm satisfies
]P(qm)/]q52m. If we define c(m)5(1/N)lnf(m);mqm
1P(qm), the generalized entropy function andc obey

]c

]m
5qm , P~qm!5c~m!2mqm . ~7!

If we obtainc(m) from a numerical simulation, we can con
struct the generalized entropyP(q) from Eq. ~7!. We have
performed a numerical simulation of the coupled Berno
map lattice withL525 andK51.6. As an initial condition,
xi , j are randomly distributed between21 and 1 andsi , j is
assumed to be 1. The total time step is 23106 and we have
calculated time average instead of the thermal average^•••&,
and further we have taken sample average of ten sam
where the initial conditions ofxi , j are different. Figure 1

FIG. 1. The generalized entropyP(e) for the energy. The solid
line is obtained by the characteristic function and the dotted lin
the logarithm of the histogram ofe.
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displays the generalized entropy for the energye5E/N per
site, which is calculated from the characteristic function a
the logarithm of the histogram of the probability distributio
for E/N which is directly obtained from the simulation. AsN
is larger, the estimate of the characteristic function at
maximum point becomes better, however, the occurrenc
the large deviation of the thermodynamic quantity becom
very rare. So the simulation at moderate sizeN is suitable.

Our dynamical system is chaotic, and a quantity wh
characterizes the dynamical chaos is the KS entropy. In
model the KS entropy is represented as

HKS5(
i , j

^2 1
2 ~11an

i , j !ln$ 1
2 ~11an

i , j !%

2 1
2 ~12an

i , j !ln$ 1
2 ~12an

i , j !%&, ~8!

which is the thermal average of the sum of the local
apunov exponent at each site. This quantity is equivalen

HKS52 (
m8 i , j

(
m8 i , j

peq~$m8 i , j%!w~$m8 i , j%

→$mi , j% ln@w~$m8 i , j%→$mi , j%#. ~9!

The KS entropy is a thermodynamic quantity and it seem
exhibit a singularity at the phase transition point as shown
@15#. Figure 2 displays the generalized entropy function
the KS entropy per site and the corresponding logarithm
histogram ofh5HKS /N. Good agreement is seen in Figs.
and 2 forL525.

We can also calculate more generalized entropy func
P(q,r ) for the combination of the two thermodynamic qua
tities Q5Nq andR5Nr from the corresponding characte
istic function f(m,n)5^exp$N(mq1mr)%&. In particular, we
consider the caser 5e5E/N. In the thermal equilibrium
state, the probability distribution function is written aspeq
}exp@N$2e/T1S(q,e)%#, where T is the temperature and
S(q,e) is the thermodynamic entropy function. The chara
teristic function f(m,n)5^exp$N(mq1ne)%& can be esti-
mated by the saddle point method as

exp@N$mqm,n1nem,n2em,n /T1S~qm,n ,em,n!%#, ~10!

whereqm,n andem,n satisfy

is
FIG. 2. The generalized entropyP(h) for the KS entropy. The

solid line is obtained by the characteristic function and the dot
line is the logarithm of the histogram ofh.
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]S

]q
~qm,n ,em,n!52m,

]S

]e
~qm,n ,em,n!5

1

T
2n. ~11!

The logarithm of the characteristic functionc(m,n)
51/Nlnf(m,n) and the entropy function satisfy

c~m,n!5mqm,n1~n21/T!em,n1S~qm,n ,em,n!,

]c

]m
5qm,n ,

~12!

]c

]n
5em,n ,

S~qm,n ,em,m!5c~m,n!2mqm,n2~n21/T!em,n .

The equation]S/]e51/T2n in Eq. ~11! implies that the
entropy function gives information at different temperatu
T8, where 1/T851/T2n. That is, qm,n at m50,n51/T
21/T8 is equal to the average value of the thermodynam
quantityQ/N per site at temperatureT8. The quantityq(0,n)
is given by]c/]m at m50 andn .

We have reconstructed two thermodynamic quantities:
magnetization and the energy at different coupling consta
from the characteristic functionf(m,n) at a fixed value of
K51.6. Figure 3 displays the reconstructed value of the
ergy 2(K/8N)( i , j s

i , j (si 11,j1si 21,j1si , j 111si , j 21), which
is calculated as

e~K8!5
K8

KN

]

]n
ln^exp~Nne!&n512K8/K .

The points show the energy for several values ofK, which is
obtained by directly changingK and taking the average ofE

FIG. 3. Energye as a function ofK. The solid line is obtained
from the characteristic function at a fixedK51.6, the points denote
numerically obtained values by changingK, and the dotted line is
the exact solution of the energy for the infinite sytem.
c
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for the coupled Bernoulli map lattice ofL525. The dotted
line denotes the exact solution for the infinite system; that

e52~K/4!cosh~K/2!/sinh~K/2!~112/pk9K1!, ~13!

where k952 tanh2(K/2)21 and K1 is the complete ellip-
tic integral atk52 sinh(K/2)/cosh2(K/2). The reconstructed
curve is close to the directly obtained values and the ex
solution for 1.4,K,1.8. Figure 4 displays the recon
structed curve of the magnetiztionm5(1/N)u( i , j s

i , j u,
which is calculated asm(K8)5 (1/N)(]/]m) ln^exp$N(mm
1ne)%&m50,n512K8/K , the directly obtained values, and th
exact solution for the infinite-size system:

m50 for K,Kc ,

5H 12
1

sinh4~K/4!
J 1/8

for K.Kc .

~14!

The directly obtained values are deviated from the exact
lution owing to the finite-size effect; however, the reco
structed curve fits the directly obtained values fairly well f
K,1.9. We cannot reconstruct the KS entropy at differe
coupling constants from the data at a fixed coupling const
because the coupling constantK is involved in theai , j in Eq.
~3! in a complicated manner.

To summarize, we have applied the thermodynamic f
malism to the two-dimensional coupled Bernoulli map latti
and characterize the large fluctuation of some thermo
namic quantities. The coupled Bernoulli map lattice is a t
model, however, an instructive model that connects the c
otic dynamics and the statistical mechanics.

The author would like to thank Professor H. Shibata
stimulating discussions.

FIG. 4. Magnetizationm as a function ofK. The solid line is
obtained from the characteristic function at a fixedK51.6, the
points denote numerically obtained values by changingK, and the
dotted line is the exact solution of the magnetization for the infin
sytem.
-
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